1. На дальних берегах. В Египетской системе измерений существовали меры длины: атур обычный, атур царский, парасанг, шем. Атур царский равнялся 1,5 парасангам. Один шем равнялся 1,2 атура обычного. Определите, какой атур больше и во сколько раз, если один парасанг равен 1,1 шема.

Возможное решение:

Выразим оба атура через одну и ту же единицу (например, шем):

Атур обычный = 10/12 шема.

Атур царский = 1,5*1,1 шема = 33/20 шема

Сравним атуры (любым способом: вычитанием, делением, приведением к общему знаменателю и т.д.):

$$\frac{\text{Царский}}{\text{Обычный}} = \frac{33}{20} \frac{12}{10} = 1,98$$

Значит царский атур больше почти в 2 раза

No	критерий	баллы
1.	Идея выражения через одинаковую единицу	2
2.	Правильно выражен царский атур	2
3.	Правильно выражен обычный атур	2
4.	Сделан обоснованный вывод о том, что царский атур больше	2
5.	Найдено правильное соотношение атуров	2
итого:		10

2. Триатлон. На соревнованиях по триатлону спортсмен должен проплыть дистанцию $S = 1\,500\,\mathrm{M}$, затем проехать на велосипеде расстояние 80S/3, а на заключительном этапе пробежать трассу длиной 20S/3. Если спортсмен едет на велосипеде со скоростью $v = 40\,\mathrm{km/vac}$, плывёт со скоростью 0.09v и бежит со скоростью 0.3v, то он выполняет норматив первого разряда. Во сколько раз спортсмен должен увеличить скорость бега, если он хочет выполнить норматив кандидата в мастера спорта (КМС), а увеличить скорость плавания и езды на велосипеде он не в состоянии?

Средняя скорость кандидата в мастера спорта на всей дистанции должна быть в $\alpha = 27/25$ раза больше, чем средняя скорость перворазрядника.

Возможное решение. Обозначим v_1 скорость бега при выполнении норматива КМС. Так как средняя скорость должна увеличиться в $\frac{27}{25}$ раза, то время на прохождение всей дистанции должно уменьшиться в $\frac{25}{27}$ раза. Время прохождения дистанции складывается из времен прохождения отдельных этапов. Запишем уравнение:

$$\frac{25}{27} \left(\frac{100S}{9v} + \frac{80S}{3v} + \frac{20 \cdot 10S}{3 \cdot 3v} \right) = \frac{100S}{9v} + \frac{80S}{3v} + \frac{20S}{3v_1}$$

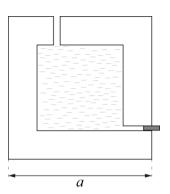
Сокращая S и решая полученное уравнение относительно v_1 , получаем

$$\frac{v_1}{v} = \frac{3}{8}$$

Так как по условию скорость бега при выполнении номы первого разряда равна $\frac{3}{10}v$, то спортсмену придется ее увеличить в $\frac{3\cdot 10v}{8\cdot 3v} = \frac{5}{4} = 1,25$ раза.

Учащиеся могут подставить в условие значения всех скоростей и расстояний в цифрах. На соревнованиях по триатлону спортсмен должен проплыть дистанцию S=1,5 км, затем проехать на велосипеде расстояние 40 км, а на заключительном этапе пробежать трассу длиной 10 км. Если спортсмен едет на велосипеде со скоростью v=40 км/час, плывет со скоростью 3,6 км/час и бежит со скоростью 12 км/час, то он как раз выполняет норматив первого разряда. Во сколько раз спортсмен должен увеличить скорость бега, если он хочет выполнить норматив кандидата в мастера спорта (КМС), а увеличить скорость плавания и езды на велосипеде он не в состоянии? Средняя скорость кандидата в мастера спорта на всей дистанции должна быть в $\alpha=1,08$ раза больше, чем средняя скорость перворазрядника.

Тогда возможно решение. Время заплыва 5/12 часа = 25 минут. Время езды на велосипеде 1 час = 60 минут. Время бега 10/12 часа = 50 минут. Общее время спортсмена на дистанции 2 часа 15 минут или 135 минут.


Время КМС на дистанции 135 мин. $\times 25/27 = 125$ мин = 2 часа 5 минут.

Это время нужно сократить на 10 мину (135 мин -125 мин) и это сокращение будет при беге. КМС должен пробежать дистанцию за 40 минут (50 - 10). Следовательно, его скорость должна возрасти в 50/40 = 1,25 раз.

№	критерий	баллы
1.	Понимание того, что такое средняя скорость	2
2.	Уравнение, связывающее времена прохождения дистанции	3
	в двух случаях	
3.	Найдено, что $v_1 = \frac{3}{8}v$	3
4.	Найдено, что v_1 превышает начальную скорость бега в 1,25 раза	2
итого:		10

7 класс

3. Вода в кубе. Сосуд представляет собой куб с длиной ребра a. Его внутренняя полость также имеет форму куба с длиной ребра 3a/5. Толщина всех стенок сосуда одинакова. На уровне дна полости и в её потолке имеются сквозные отверстия малого диаметра. Нижнее отверстие закрыто пробкой. Куб заполнили водой, поместили в цилиндр с площадью дна $3a^2$ и вынули пробку из отверстия. Определите уровень воды h, установившийся в цилиндре (h измеряют ото дна цилиндра). Сосуд не всплывает.

Примечание. В открытых сообщающихся сосудах устанавливается одинаковый уровень воды.

Возможное решение. Возможны два сценария развития событий. Либо вода полностью выльется из полости и ее уровень окажется ниже отверстия в стенке сосуда, либо уровень воды окажется выше уровня отверстия и, следовательно, в полости останется некоторое количество воды. Проверим сначала первый вариант. Используем равенство начального объема воды и объема воды, вылившейся в стакан.

 $\frac{27}{125}a^3=(3a^2-a^2)h$, где h – искомая высота уровня воды. После вычислений получаем:

$$\frac{27}{125}a^3 = 2a^2h, \quad h = \frac{27}{250}a = 0.108a$$

Это значительно меньше толщины стенки сосуда d, которая в нашем случае равна

$$d = \frac{a - \frac{3}{5}a}{2} = \frac{1}{5}a$$
. Значит, реализуется именно этот вариант.

Otbet: $h = \frac{27}{250}a$.

№	критерий	баллы
1.	Идея равенства объемов воды до и после выливания	1
2.	Правильно записанный объем воды до выливания	2
3.	Правильно записанный объем после выливания	2
4.	Правильно найдена толщина стенки	1
5.	Численный ответ	2
6.	Слова о реализации именного этого сценария	2
итого:		10

4. Плотность стенок. Сосуд из предыдущей задачи заполнили жидкостью плотностью $\rho_1 = 1,25 \text{ г/см}^3$. Чему равна плотность ρ_2 его стенок, если средняя плотность заполненного сосуда оказалась равной $\rho_{\rm cp} = 2,23 \text{ г/см}^3$?

Возможное решение. Средняя плотность сосуда с жидкостью $\rho_{\rm cp}$ равна его полной массе, деленной на его объем $V_{\rm c}$. Полная масса складывается из массы жидкости $m_{\rm ж}=\rho_{\rm ж}V_{\rm ж}$ и массы стенок $m_{\rm ct}=\rho_{\rm ct}V_{\rm ct}$

$$\begin{split} V_{_{\rm K}} &= \frac{27}{125} a^3 \\ V_{_{\rm CT}} &= \left(1 - \frac{27}{125}\right) a^3 \\ \rho_{_{\rm CP}} &= \frac{\rho_{_{\rm W}} v_{_{\rm K}} + \rho_{_{\rm CT}} v_{_{\rm CT}}}{v_{_{\rm C}}} \text{, откуда } \rho_{_{\rm CT}} = \frac{\rho_{_{\rm CP}} v_{_{\rm C}} - \rho_{_{\rm W}} v_{_{\rm K}}}{v_{_{\rm CT}}} = \frac{2,23 a^3 - 1.25 \cdot \frac{27}{125} a^3}{\left(1 - \frac{27}{125}\right) a^3} = 2,5 \, \frac{\Gamma}{\text{см}^3}. \end{split}$$

№	критерий	баллы
1.	Записано определение средней плотности	2
2.	Записано выражение для массы жидкости	1
3.	Записано выражение для массы стенок	1
4.	Правильно вычислен объем жидкости	1
5.	Правильно вычислен объем стенок	2
6.	Получен численный ответ	2
7.	Указана единица измерения	1
итого:		10