Школьный этап по химии Химия. 9 класс. Ограничение по времени 90 минут

Действуем сообща. Вариант №1

Выберите ВСЕ верные ответы

Выберите схемы реакций, в которых повышение давления будет смещать равновесие в ту же сторону, что и понижение температуры.

- $\bigcap CaCO_3(\mathsf{T}) \leftrightarrow CaO(\mathsf{T}) + CO_2(\mathsf{\Gamma}) Q$
- $S(au) + H_2(au) \leftrightarrow H_2S(au) Q$

Формула вычисления баллов: 0-2 1-1 3-0

Решение задачи:

Уравнения реакций:

$$CH_4(\mathbf{r}) + 4S(\mathbf{t}) \Leftrightarrow CS_2(\mathbf{r}) + 2H_2S(\mathbf{r}) - Q$$

$$CaCO_3(\mathsf{T}) \Leftrightarrow CaO(\mathsf{T}) + CO_2(\mathsf{T}) - Q$$

$$S(\mathbf{T}) + H_2(\mathbf{F}) \Leftrightarrow H_2S(\mathbf{F}) - Q.$$

В эндотермической реакции ${\bf 1}$ повышение давления также как и понижение температуры сместит равновесие в сторону меньшего числа объемов, то есть влево.

Во $\mathbf{2}$ эндотермической реакции повышение давления также как и понижение температуры сместит равновесие в сторону меньшего числа объемов, то есть влево.

В $\bf 3$ эндотермической реакции число объемов не меняется, поэтому повышение давления не сместит равновесие.

Действуем сообща. Вариант №2

Выберите ВСЕ верные ответы

Выберите схемы реакций, в которых повышение давления будет смещать равновесие в ту же сторону, что и понижение температуры.

- $H_2(\Gamma) + Cl_2(\Gamma) \Leftrightarrow HCl(\Gamma) + Q$
- $H_2O(\Gamma)\Leftrightarrow H_2(\Gamma)+O_2(\Gamma)-Q$
- $\bigcirc CO(\Gamma) + Cl_2(\Gamma) \Leftrightarrow COCl_2(\Gamma) + Q$

Формула вычисления баллов: 0-2 1-1 3-0

Решение задачи:

Уравнения реакций:

$$H_2(\mathbf{r}) + Cl_2(\mathbf{r}) \Leftrightarrow 2HCl(\mathbf{r}) + Q$$

$$2H_2O(\mathbf{r})\Leftrightarrow 2H_2(\mathbf{r})+O_2(\mathbf{r})-Q$$

$$CO(\mathbf{r}) + Cl_2(\mathbf{r}) \Leftrightarrow COCl_2(\mathbf{r}) + Q$$

В экзотермической реакции 1 число объемов не меняется, поэтому повышение давления не сместит равновесие.

Во $\mathbf{2}$ эндотермической реакции повышение давления также как и понижение температуры сместит равновесие в сторону меньшего числа объемов, то есть влево.

В 3 экзотермической реакции понижение температуры также как повышение давления сместит равновесие в сторону образования меньшего числа объемов, то есть вправо.

Состав смеси. Вариант №1

В качестве ответа вводите целое число или конечную десятичную дробь. Если число отрицательное, введите минус (-) перед ним. В качестве разделителя целой и дробной частей используйте точку либо запятую. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов) быть не должно. Пример: -3,14.

Имеется смесь оксида и безводного пероксида бария, в которой на 5 атомов бария приходится 7 атомов кислорода. Массовая доля оксида бария в этой смеси составляет_____ %. Ответ округлите до десятых.

Правильный ответ:

57.6

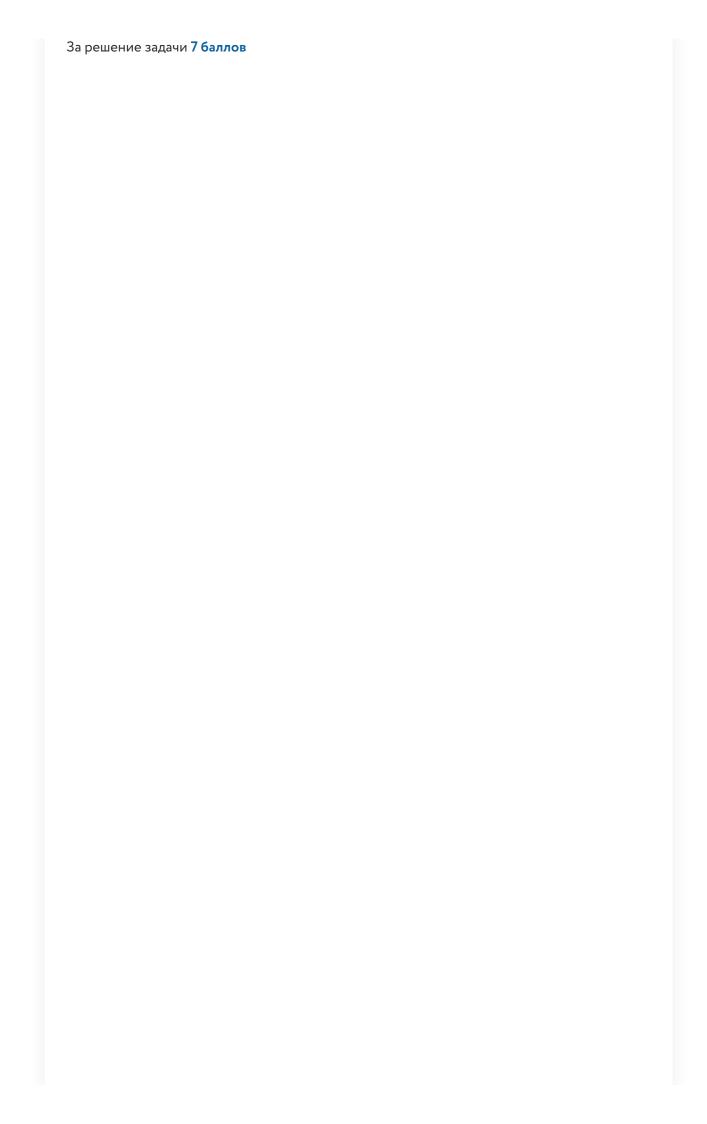
Формула вычисления баллов: 0-7 1-0

Решение задачи:

Обозначим за x-n(BaO); y- $n(BaO_2)$.

$$n(Ba) = x + y$$

$$n(O) = x + 2y$$


$$\frac{x+y}{x+2y}=\frac{5}{7}; x=1,5y$$

$$m(BaO) = M \cdot n = 153x$$

$$m(BaO_2)=169\cdot 0,67x$$

$$\omega(BaO) = rac{m(BaO)}{m(exttt{cмеси})} \cdot 100\%$$

$$\omega(BaO) = rac{153x}{112,67x+153x} \cdot 100\% = 57,59\% pprox 57,6\%$$

Состав смеси. Вариант №2

В качестве ответа вводите целое число или конечную десятичную дробь. Если число отрицательное, введите минус (-) перед ним. В качестве разделителя целой и дробной частей используйте точку либо запятую. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов) быть не должно. Пример: -3,14.

Имеется смесь пероксида и озонида калия, в которой на 3 атома калия приходится 4 атома кислорода. Массовая доля пероксида калия в этой смеси составляет_____ %. Ответ округлите до целого.

Правильный ответ:

76

Формула вычисления баллов: 0-7 1-0

Решение задачи:

Обозначим за $x-n(\mathsf{K}_2\;O_2); y-n(KO_3).$

$$n(K) = 2x + y$$

$$n(O) = 2x + 3y$$

$$\frac{2x+y}{2x+3y} = \frac{3}{4}; x = 2,5y$$

$$m(K_2O_2)=M\cdot n=110x$$

$$m(KO_3) = 87 \cdot 0, 4x$$

$$\omega(extsf{K}_2 extsf{O}_2) = rac{m(K_2O_2)}{m(extsf{cmecu})} = rac{110x}{34,8x+110x} \cdot 100\% = 75,97\% pprox 76\%$$

Знаменательная дата. Вариант №1

Сэр Эдвард Франкленд синтезировал токсичное металлорганическое соединение ртути, которое впоследствии стали использовать как фунгицид для семян. Это привело к отравлению людей, употреблявших хлеб, приготовленный из такого зерна. Ответьте на следующие вопросы и из введённых цифр Вы получите год этого открытия.

1) Число атомов серы в соединении с элементом, который имеет электронную формулу атома $[Ar]4s_1.$

Правильный ответ:	
1	
1 балл	
2) Максимальная степень окислени России.	я атома элемента, названного в честь
Правильный ответ:	
8	

1 балл

3) Сумма коэффициентов в левой части уравнения взаимодействия хлорида кальция с алюминием.

Правильный ответ:

5

1 балл

4) Коэффициент у окислителя в уравнении реакции горения силана.

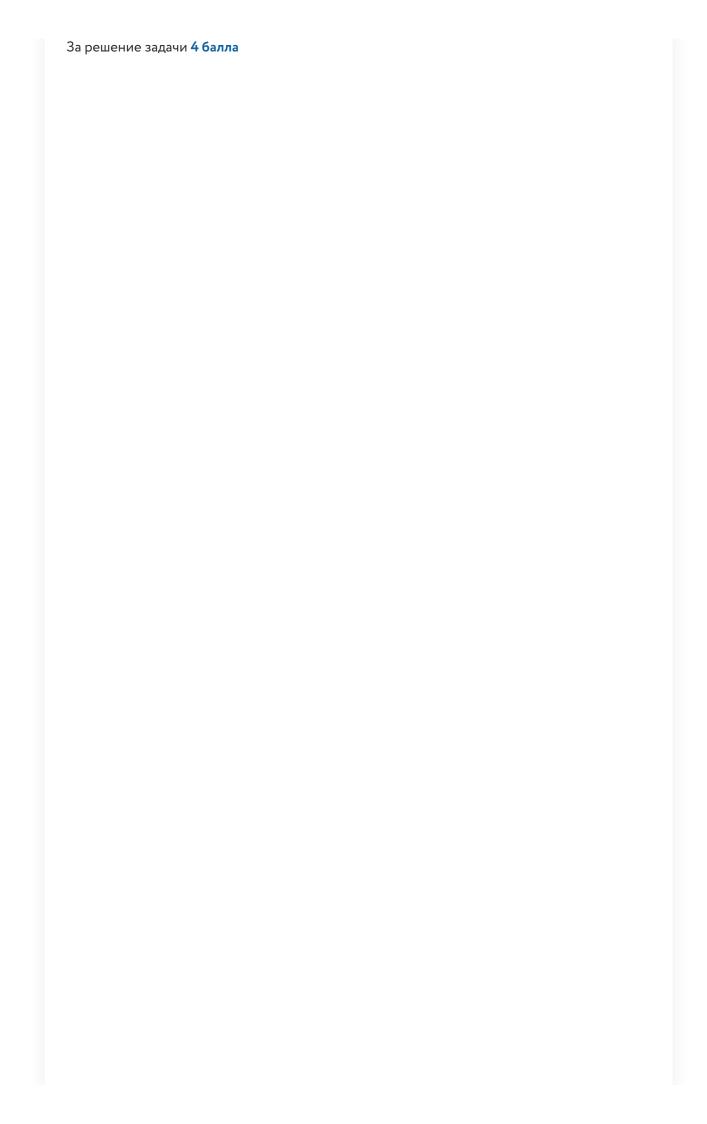
Правильный ответ:

2

1 балл

Решение задачи:

Ответ: 1852


- 1) Формула соединения K_2S , атомов серы -1.
- 2) Этот элемент рутений, он находится в побочной подгруппе VIII группы периодической системы. Максимальная степень окисления +8.

3)
$$3CaCl_2 + 2Al = 3Ca + 2AlCl_3$$

Сумма коэффициентов в левой части равна 5.

4)
$$SiH_4 + 2O_2 = SiO_2 + 2H_2O$$

Коэффициент у кислорода -2.

Знаменательная дата. Вариант №2

Джон Сноу – знаменитый британский хирург, первым использовавший для наркоза хлороформ вместо эфира. Он установил, что причиной заражения и распространения эпидемии холеры в Лондоне было употребление зараженной воды. Очень молодым человеком он был принят в Королевское общество хирургов. Ответьте на следующие вопросы и из введённых цифр вы получите год этого события.

1) Наиболее устойчивая степень окисления атома элемента, название которого переводится как «зеленая ветвь».

Правильный ответ:			
1			
1 балл			

2) Сумма всех коэффициентов в уравнении взаимодействия твердого сульфата аммония с концентрированным раствором гидроксида натрия.

Правильный ответ:

1 балл

3) Число атомов хлора в соединении с элементом, атом которого имеет электронную формулу $[He]2s^22p^1.$		
Правильный ответ:		
3		
1 балл		
4) Высшая степень окисления элемента номер 76.		
Правильный ответ:		
8		
1 балл		
Решение задачи:		
Ответ: 1838		
1) Элемент- таллий. Устойчивая степень окисления $+1$.		
2) $(NH_4)_2SO_4 + 2NaOH = Na_2SO_4 + 2NH_3 + 2H_2O$		
Сумма всех коэффициентов —8		
3) Формула соединения В ${\it Cl}_3$. Число атомов хлора -3 .		
4) Элемент- осмий. Высшая степень окисления равна +8.		

Ионы-близнецы. Вариант №1

Выберите ВСЕ верные ответы

Частицы (атомы или ионы), содержащие одинаковое количество электронов, называются изоэлектронными. Выберите из предложенного списка ионные соединения, которые образованы изоэлектронными ионами.

- 1) *NaBr*
- 2) *CaO*
- 3) *Na₂O*
- 4) *CaCl*₂
- 5) *Kl*
- 6) *MgO*

Формула вычисления баллов: 0-3 1-2 2-1 3-0

Решение задачи:

Электронные формулы ионов:

$$Na^+, O^{2-}1s^22s^22p^6;$$

$$Ca^{2+},Cl^-1s^22s^22p^63s^23p^6;\\$$

$$Mg^{2+}, O^{2-}1s^22s^22p^6.$$

Ионы-близнецы. Вариант №2

Выберите ВСЕ верные ответы

Частицы (атомы или ионы), содержащие одинаковое количество электронов, называются изоэлектронными. Выберите из предложенного списка ионные соединения, которые образованы изоэлектронными ионами.

- \bigcirc 1) Al_2O_3
- 2) *CaS*
- 3) *Na*₂*S*
- \bigcirc 4) CaF_2
- 5) *LiH*
- 6) *MgCl*₂

Формула вычисления баллов: 0-3 1-2 2-1 3-0

Решение задачи:

Электронные формулы ионов:

$$Al^{3+}, O^{2-} \\ 1s^2 2s^2 2p^6;$$

$$Ca^{2+}, S^{2-}$$
 $1s^22s^22p^63s^23p^6;$

$$Li^+, H^ 1s^2.$$

Неочевидные факты. Вариант №1

Если все варианты одновременно не помещаются в окно браузера, можно воспользоваться сочетанием клавиш ctrl + (-) (cmd + (-) для Мас) для уменьшения масштаба окна

Установите соответствие между характером среды и растворами, полученными при сливании равных объемов 1M растворов следующих веществ.

A)
$$NH_3 \cdot H_2O + HCl = NH_4Cl + H_2O$$
 кислая

Б) $NaOH + H_2SO_4$ кислая

В) $NaOH + NaHCO_3$

Доступные варианты ответов (каждый может быть использован несколько раз):

кислая нейтральная щелочная

Формула вычисления баллов: 0-3 1-2 2-1 3-0

Решение задачи:

A)
$$NH_3$$
· H_2 0 + $HCl = NH_4Cl + H_2O$

среда кислая благодаря гидролизу соли по катиону.

$$NH_4^+ + H_2O \Leftrightarrow NH_3 \cdot H_2 O + H^+.$$

Б)
$$NaOH + H_2SO_4 = NaHSO_4 + H_2O$$

среда слабокислая благодаря диссоциации соли.

$$NaHSO_4 = Na^+ + HSO_{4-}$$

$$HSO_{4-} \Leftrightarrow H^+ + SO_4^{2-}$$

B)
$$NaOH + NaHCO_3 = Na_2CO_3 + H_2O$$

среда щелочная благодаря гидролизу соли по аниону

$$CO_3^{2-} + H_2O \Leftrightarrow HCO_{3-} + OH^-$$

Неочевидные факты. Вариант №2

Если все варианты одновременно не помещаются в окно браузера, можно воспользоваться сочетанием клавиш ctrl + (-) (cmd + (-) для Мас) для уменьшения масштаба окна

Установите соответствие между характером среды и растворами, полученными при сливании равных объемов 1М растворов следующих веществ.

A) $NH_3 \cdot H_2O + HNO_3$	кислая
Б) $KOH + H_2SO_4$	кислая
B) $NaOH+Na_2HPO_4$	щелочная

Доступные варианты ответов (каждый может быть использован несколько раз):

щелочная

кислая

Формула вычисления баллов: 0-3 1-2 2-1 3-0

нейтральная

Решение задачи:

A)
$$NH_3 \cdot H_2O + HCl = NH_4Cl + H_2O$$

среда кислая благодаря гидролизу солипо катиону

$$NH_{4+} + H_2O \Leftrightarrow NH_3 \cdot H_2O + H^+.$$

$$\mathsf{5)}\ KOH + H_2SO_4 = KHSO_4 + H_2O$$

среда слабокислая благодаря диссоциации соли.

$$KHSO_4 = K^+ + HSO_{4-}$$

$$HSO_{4-} \Leftrightarrow H^+ + SO_4^{2-}$$

B)
$$NaOH + Na_2HPO_4 = Na_3PO_4 + H_2O$$

среда щелочнаяблагодаря гидролизу соли по аниону

$$PO_4^{3-} + H_2O \Leftrightarrow HPO_4^{2-} + OH^-$$

Это что за «птица»?. Вариант №1

Формулу запишите БЕЗ пробелов, знаков препинания и дополнительных символов, используйте только ЛАТИНСКИЕ символы (например, H2S)

В атоме химического элемента число p-электронов в 1,2 раза меньше, чем в его однозарядном ионе. Определите этот элемент и запишите его символ.

Правильный ответ:

F

Формула вычисления баллов: 0-11-0

Решение задачи:

Поскольку в нейтральном атоме число p-электронов в 1,2 раза меньше, чем в однозарядном ионе, можно сделать вывод, что данный ион является отрицательно заряженным, тогда если в атоме исходного элемента xp-электронов, то в ионе -(x+1)p-электрон:

$$\dfrac{x+1}{x}=1,2$$
, откуда $x=5$

Значит, изначальный атом содержит $5\ p$ -электронов, то есть имеет электронную конфигурацию $1s^22s^22p^5$. Данной конфигурации соответствует атом F.

Это что за «птица»?. Вариант №2

Формулу запишите БЕЗ пробелов, знаков препинания и дополнительных символов, используйте только ЛАТИНСКИЕ символы (например, H2S)

В атоме химического элемента число p-электронов в 1,091 раз меньше, чем в его однозарядном ионе. Определите элемент и запишите его символ.

Правильный ответ:

Cl

Формула вычисления баллов: 0-11-0

Решение задачи:

Поскольку в нейтральном атоме число p-электронов в 1,091 раза меньше, чем в однозарядном ионе, можно сделать вывод, что данный ион является отрицательно заряженным, тогда если в атоме исходного элемента xp-электронов, то в ионе – (x+1)p-электрон:

$$\dfrac{x+1}{x}=1,091,$$
 откуда $x=11$

Значит, изначальный атом содержит $11\ p$ -электронов, то есть имеет электронную конфигурацию $1s^22s^22p^63s^23p^5$. Данной конфигурации соответствует атом Cl.

Эти разные кристаллогидраты. Вариант №1

В качестве ответа вводите целое число или конечную десятичную дробь. Если число отрицательное, введите минус (-) перед ним. В качестве разделителя целой и дробной частей используйте точку либо запятую. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов) быть не должно. Пример: -3,14.

9,9 г кристаллогидрата хлорида кальция растворили в 110,1 см 3 воды и получили 5%-ный раствор соли. Установите состав растворенного кристаллогидрата. В ответе запишите число молекул воды, входящей в состав кристаллогидрата.

_				U	
П	pai	вил	ьны	Й	ответ:

4

Формула вычисления баллов: 0-7 1-0

Решение задачи:

Найдем массу раствора:

m p-pa= m кр.г.+m воды=9,9г+110,1см $^3\cdot 1$ г/см $^3=120$ г.

Масса безводной соли:

$$M(CaCl_2)=w\cdot m$$
р-ра $=0,05\cdot 120=6$ г.

Найдем молярную массу кристаллогидрата $CaCl_2, (exttt{M} \ (exttt{Ca} \ Cl_2) = 111 \ exttt{г/моль}):$

$$9,9$$
 г $CaCl_2 \cdot xH_2O$ — 6 г $CaCl_2$

$$X$$
 г/моль -111 г/моль $X=183,15$ г/моль.

Масса кристаллизационной воды(сучетом округления) равна:

$$M=183$$
— $111=72$ г.

Количество вещества воды: $n(H_2O)=m:M=72$ г:18 г/моль=4 моль.

Эти разные кристаллогидраты. Вариант №2

В качестве ответа вводите целое число или конечную десятичную дробь. Если число отрицательное, введите минус (-) перед ним. В качестве разделителя целой и дробной частей используйте точку либо запятую. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов) быть не должно. Пример: -3,14.

8,43 г кристаллогидрата сульфата меди (II) растворили в 81,57 см 3 воды и получили 7%-ный раствор соли. Установите состав растворенного кристаллогидрата. В ответе запишите число молекул воды, входящей в состав кристаллогидрата.

Правильный ответ:

3

Решение задачи:

Найдем массу раствора:

$$m$$
 p-pa $= m$ кр.г. $+m$ воды $= 8, 2$ г $+81, 8$ см $^3 \cdot 1$ г/см $^3 = 90$ г.

Масса безводной соли: $m(CuSO_4) = \omega \cdot m_{p-pa} = 0,07 \cdot 90 = 6,3$ г.

Найдем молярную массу кристаллогидрата $(M(CuSO_4)=160$ г/моль):8,43 г $CuSO_4\cdot xH_2O_--6,3$ г $CuSO_4$

$$X$$
 г/моль -160 г/моль $X=214,09$ г/моль.

Масса кристаллизационной воды (с учетом округления) равна: m=214– 160=54 г.

Количество вещества воды: $n(H_2O)=m:M=54$ г : 18 г/моль =3 моль.

Неизвестные реагенты. Вариант №1

В качестве ответа вводите целое число или конечную десятичную дробь. Если число отрицательное, введите минус (-) перед ним. В качестве разделителя целой и дробной частей используйте точку либо запятую. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов) быть не должно. Пример: -3,14.

Какие два вещества (за исключением кислот) были использованы для осуществления окислительно-восстановительной реакции, если в результате получились только йодсодержащая кислота и вода? Кислота существует в свободном виде, сильный электролит, окислитель. Составьте уравнение реакции. В ответе укажите сумму всех коэффициентов в этом уравнении.

11	равильный	ответ

12

Решение задачи:

$$I_2 + 5H_2O_2 = 2HIO_3 + 4H_2O$$

Неизвестные реагенты. Вариант №2

В качестве ответа вводите целое число или конечную десятичную дробь. Если число отрицательное, введите минус (-) перед ним. В качестве разделителя целой и дробной частей используйте точку либо запятую. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов) быть не должно. Пример: -3,14.

Какие два вещества были использованы для осуществления окислительно-восстановительной реакции, если в результате получилось только твердое простое вещество - неметалл темно-серого цвета, с молекулярной кристаллической решеткой, практически нерастворимый в воде, хорошо растворимый в спирте при комнатной температуре и вода? Составьте уравнение реакции. В ответе укажите сумму всех коэффициентов в этом уравнении.

П	равильный	OTDOT:
ш	равильныи	ответ:

12

Решение задачи:

$$5HI + HIO_3 = 3I_2 + 3H_2O$$

Каламбур. Вариант №1

В качестве ответа укажите ОДНО слово в именительном падеже БЕЗ пробелов, знаков препинания и дополнительных символов, например, олимпиада.

Если в слове, обозначающем название элемента-металла и состоящем из 6 букв, пронумеровать все буквы по порядку, а затем переставить их или убрать некоторые, можно получить новые слова.

Так 3-я,4-я,5-я,3-я,5-я и 6-я буквы этого слова образуют название одного из изотопов водорода.

А 4-я, 5-я, 3-я и 2-я буквы образуют женское имя.

Этот элемент,
Правильный ответ:
Натрий
Формула вычисления баллов: 0-11-0

1 балл

первое зашифрованное слово______,

Правильный ответ:

Тритий

Формула вычисления баллов: 0-11-0

1 балл

второе зашифрованное слово
Правильный ответ:
Рита
Формула вычисления баллов: 0-11-0

1 балл

Каламбур. Вариант №2

В качестве ответа укажите ОДНО слово в именительном падеже БЕЗ пробелов, знаков препинания и дополнительных символов, например, олимпиада.

Если в слове, обозначающем название элемента-неметалла и состоящем из 6 букв, пронумеровать все буквы по порядку, а затем переставить их или убрать некоторые, можно получить новые слова.

Так 5-я,6-я, 2-я и 1-я буквы образуют название планеты, атмосфера которой состоит из углекислого газа.

А 6-я 5-я,2-я и 3-я буквы образуют название реки.

Этот элемент,
Правильный ответ:
Сурьма
Формула вычисления баллов: 0-11-0
1 балл
первое зашифрованное слово,
Правильный ответ:
Марс

Формула вычисления баллов: 0-11-0

1 балл

второе зашифрованное слово
Правильный ответ:
Амур
Формула вычисления баллов: 0-11-0

1 балл

Давление в норме?. Вариант №1

В качестве ответа вводите целое число или конечную десятичную дробь. Если число отрицательное, введите минус (-) перед ним. В качестве разделителя целой и дробной частей используйте точку либо запятую. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов) быть не должно. Пример: -3,14.

Газы, полученные при термическом разложении 1 моль нитрита аммония, 2 моль нитрата аммония и 3 моль нитрата железа (III), пропустили через осушитель и поместили в баллон емкостью 40 л при температуре $30^{0}C$. Рассчитайте давление (кПа) в баллоне с газовой смесью. Ответ округлите до целого числа.

Правильный ответ:	
897	

Решение задачи:

Уравнения реакций разложения:

$$NH_4NO_2 = N_2 + 2H_2O$$

$$NH_4NO_3 = N_2O + 2H_2O$$

$$4Fe(NO_3)_3 = 2Fe_2O_3 + 12NO_2 + 3O_2$$

После осушителя газовая смесь состоит из азота, кислорода и оксидов азота (I) и (IV).

По условию задачи:

$$n(N_2) = n(NH_4NO_2) = 1$$
 моль;

$$n(N_2O)=n(NH_4NO_3)=2$$
 моль;

$$n(NO_2)=3n(Fe(NO_3)_3)=9$$
 моль

$$n(O_2)=0,75 n(Fe(NO_3)_3)=2,25$$
 моль

$$n$$
(общее) = $1+2+9+2, 25=14, 25$ моль.

Давление в баллоне рассчитывается по закону Менделеева-Клапейрона:

$$P = rac{nRT}{V} = rac{14,25 \cdot 8,314 \cdot 303}{0,04} = 897440,3$$
 Па $pprox 897$ кПа.

Давление в норме?. Вариант №2

В качестве ответа вводите целое число или конечную десятичную дробь. Если число отрицательное, введите минус (-) перед ним. В качестве разделителя целой и дробной частей используйте точку либо запятую. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов) быть не должно. Пример: -3,14.

Газы, полученные при термическом разложении 1 моль гидрокарбоната натрия, 1 моль нитрита аммония и 3 моль нитрата свинца (II), пропустили через осушитель и поместили в баллон емкостью 40 л при температуре $30^{\circ}C$. Рассчитайте давление (кПа) в баллоне с газовой смесью. Ответ округлите до целого числа.

Правильный ответ:	
567	

Решение задачи:

Уравнения реакций разложения:

$$2NaHCO_3 = Na_2CO_3 + CO_2 + H_2O$$

$$NH_4NO_2 = N_2 + 2H_2O$$

$$2Pb(NO_3)_2 = 2PbO + 4NO_2 + O_2$$

После осушителя газовая смесь состоит из углекислого газа, азота, кислорода и оксида азота (IV).

По условию задачи:

$$n(N_2) = n(NH_4NO_2) = 1$$
 моль;

$$n(CO_2) = 0, 5n(NaHCO_3) = 0, 5$$
 моль;

$$n(NO_2)=2n(Pb(NO_3)_2)=6$$
 моль

$$n(O_2) = 0, 5n(Pb(NO_3)_2) = 1, 5$$
 моль

$$n$$
(общее) $=1+0,5+6+1,5=9$ моль.

Давление в баллоне рассчитывается по закону Менделеева-Клапейрона:

$$P = rac{nRT}{V} = rac{9 \cdot 8,314 \cdot 303}{0,04} = 566806,95$$
 Па $= 567$ кПа.

