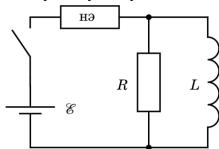
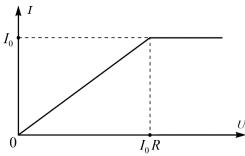

Задача 2.11.1. Разгон при отключённом источнике (12 баллов). Две одинаковые

проводящие оболочки в форме цилиндров с малыми отверстиями на общей оси образуют конденсатор ёмкостью C. В центре левой оболочки удерживают шарик с зарядом q. Суммарный заряд всей системы, включая заряд шарика, равен нулю. Конденсатор заряжают, подключив к источнику с напряжением U, затем отключают от источника и отпускают шарик. Шарик начинает двигаться вдоль оси и, пролетев через отверстия, попадает внутрь правой оболочки.




Какую кинетическую энергию будет иметь шарик в центре правой оболочки?

При каком заряде шарика эта энергия максимальна и чему она равна?

Выделением тепла из-за тока в оболочках можно пренебречь. Поле тяжести не учитывайте.

Задача 2.11.2. Нелинейная цепь (12 баллов). Электрическая цепь состоит из идеального источника с ЭДС $\mathcal{E}=20\,\mathrm{B}$, резистора с сопротивлением $R=5\,\mathrm{Om}$, катушки с индуктивностью $L=20\,\mathrm{mTh}$ и нулевым сопротивлением и нелинейного элемента, вольтамперная характеристика которого представлена на рисунке ($I_0=3\,\mathrm{A}$). Изначально ключ разомкнут, тока в цепи нет. Какое количество теплоты выделится на резисторе через большой промежуток времени после замыкания ключа?

Задача 2.11.3. Вспышка в кубе (12 баллов). В кубе из вещества с показателем преломления n=2 точечный источник испустил кратковременную вспышку, свет от которой расходится однородно во всех направлениях. Свет веществом куба не поглощается. Какие значения может принимать доля η энергии вспышки, вышедшей наружу, в зависимости от положения источника внутри куба? Укажите, при каких положениях источника эта доля минимальна, при каких максимальна и чему она равна?

При падении света на границу раздела часть его энергии, зависящая от угла падения, отражается, а часть проходит через границу раздела.

Примечание: при решении Вам может понадобиться формула площади поверхности сферического сегмента (см. рисунок): $S = 2\pi Rh$, где R – радиус сферы, h – высота сегмента.

h

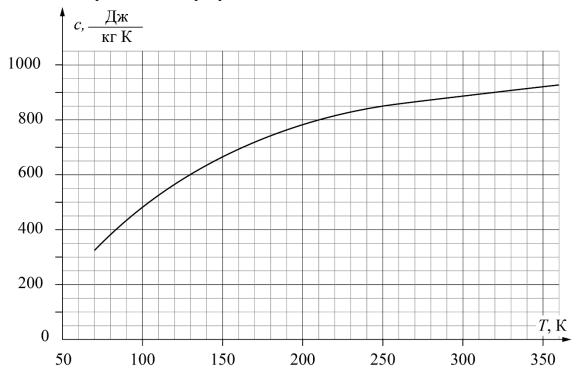
24 января на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач первого тура. Начало разбора (по московскому времени):

7 класс – 11.00; 8 класс – 10.00; 9 класс – 12.00; 10 класс – 13.30; 11 класс – 15.00.

26 января состоится онлайн-разбор решений заданий второго тура. Начало разбора:

7 класс – 11.00; 8 класс – 10.00; 9 класс – 12.00; 10 класс – 13.30; 11 класс – 15.00.

Задача 2.11.4. Определение удельной теплоты испарения жидкого азота (14 баллов).


Цель эксперимента — определение удельной теплоты испарения жидкого азота при атмосферном давлении.

Масса цилиндра $m_{Al} = 69 \, \text{г}$, начальная масса контейнера с азотом $M = 250 \, \text{г}$, температура помещения 23° С. Температура кипения жидкого азота — минус 196° С.

Описание эксперимента. Жидкий азот, налитый в пенопластовый контейнер, из-за теплообмена с окружающей средой испаряется, и его масса уменьшается. При погружении в жидкий азот алюминиевого цилиндра, имевшего температуру помещения, азот начинает активно кипеть и интенсивность его испарения увеличивается. Масса *М* контейнера с жидким азотом фиксируется с помощью электронных весов. Показания весов в зависимости от времени приведены в таблице.

<i>t</i> , мин : с	0:00	0:49	1:32	2:05	2:41	3:22	4:06	4:50	5:23	5:52	2 6:07	6:30
М, г	250	246	242	238	234	230	226	222	218	274	264	254
<i>t</i> , мин : с	6:54	7:25	7:48	8:20	8:49	9:33	10:15	5 10:5	55 11	:37	12:20	13:05
М, г	244	232	229	224	219	215	211	207	20	3	199	195

Примечание. Удельная теплоемкость алюминия зависит от температуры. График этой зависимости представлен на рисунке.

²⁴ января на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач первого тура. Начало разбора (по московскому времени):

⁷ класс – 11.00; 8 класс – 10.00; 9 класс – 12.00; 10 класс – 13.30; 11 класс – 15.00.

²⁶ января состоится онлайн-разбор решений заданий второго тура. Начало разбора:

⁷ класс – 11.00; 8 класс – 10.00; 9 класс – 12.00; 10 класс – 13.30; 11 класс – 15.00.

LV Всероссийская олимпиада школьников по физике. Региональный этап. Первый тур. 23 января 2021 г.

Задание. Используя результаты измерения зависимости массы азота от времени и график зависимости удельной теплоемкости алюминия от температуры, определите удельную теплоту испарения азота λ .

Из-за ограниченного времени выполнения задания погрешность определения λ оценивать не требуется, однако точность полученных вами промежуточных и конечных результатов будет учитываться при выставлении баллов.

²⁴ января на портале http://abitu.net/vseros **будет проведён онлайн-разбор решений задач первого тура**. Начало разбора (по московскому времени):

⁷ класс – 11.00; 8 класс – 10.00; 9 класс – 12.00; 10 класс – 13.30; 11 класс – 15.00.