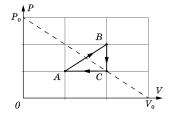
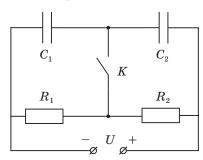


LIV Всероссийская олимпиада школьников по физике

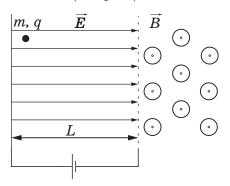
Школьный этап (2 – 3 октября 2019 г.)

11 класс


1. **Шарнир.** Однородный стержень массой m=800 г прикреплен к потолку при помощи небольшого гладкого шарнира. Нижний конец стержня удерживают горизонтальной силой $F=4~\mathrm{H.}$


- (a) На какой угол α стержень отклонен от вертикали в положении равновесия?
- (b) Найдите силу N реакции опоры шарнира, действующую на стержень (модуль и направление).

Ускорение свободного падения $g = 10 \text{ м/c}^2$.


- 2. Два заряда. Два точечных одноименных заряда $q_1=1$ нКл и $q_2=2$ нКл первоначально удерживают на расстоянии 1 см друг от друга. Массы зарядов $m_1=3$ мг и $m_2=1$ мг. Заряды отпускают. В процессе движения заряды взаимодействуют только между собой.
 - (a) Чему равно отношение модулей сил, действующих на заряды, F_2/F_1 через одну секунду после начала движения?
 - (b) Чему равно отношение модулей ускорений зарядов a_2/a_1 через две секунды после начала движения?
 - (c) Чему равно отношение модулей импульсов зарядов p_2/p_1 через три секунды после начала движения?
 - (d) Чему равно отношение кинетических энергий зарядов E_2/E_1 через четыре секунды после начала движений?
 - (e) Чему равно отношение путей, пройденных зарядами за первые пять секунд движения, S_2/S_1 ?
- 3. **Треугольный цикл.** Тепловая машина, у которой в качестве рабочего тела используют два моля идеального одноатомного газа, за один замкнутый цикл ABC (см. рис.) совершает работу A_0 .

- (а) На каком(их) участке(ах) к рабочему телу подводится тепло?
- (b) Чему равно это количество теплоты?
- (c) Вычислите КПД η данной тепловой машины.
- 4. Мостовая схема. Электрическая цепь (см. рис.), состоящая из двух резисторов ($R_1 = 8$ кОм, $R_2 = 4$ кОм) и двух конденсаторов ($C_1 = 100$ мкФ, $C_2 = 50$ мкФ) подключена к идеальному источнику постоянного напряжения U = 12 В. Цепь находится в установившемся режиме, ключ K разомкнут. Определите:
 - (a) силу тока I_0 , протекающего через источник напряжения в установившемся режиме;
 - (b) Заряды q_{1_0} и q_{2_0} на конденсаторах в установившемся режиме;
 - (c) Заряд q_K , прошедший через ключ K после его замыкания.
 - (d) В каком направлении шел ток через ключ?

5. В полях. Покоящуюся частицу массой m=1 г и зарядом q=1 мКл помещают в однородное электрическое поле напряженностью $E=100~{\rm B/m}$. Пролетев в электрическом поле расстояние $L=2~{\rm m}$, частица переходит в область однородного магнитного поля с индукцией $B=4~{\rm Tn}$. Линии индукции магнитного поля перпендикулярны линиям напряженности электрического поля (см. рис.).

- (а) Изобразите схематически траекторию движения частицы и точку, в которой произойдет остановка частицы.
- (b) Определите время t_0 от начала движения частицы до ее ближайшей остановки.
- (c) Найдите путь S частицы до остановки.
- (d) Чему равен модуль перемещения H частицы до остановки?

Действие силы тяжести не учитывайте!