Телепроект «МОЯ ШКОЛА в online» ГОТОВИМСЯ К ОГЭ

Математика 9 класс Урок № 36

Треугольник. Вычисление элементов треугольника. Практика.

Пруленцова Мария Романовна, учитель математики Гимназии им. Е.М. Примакова, эксперт ОГЭ по математике, методист программы «Учитель для России»

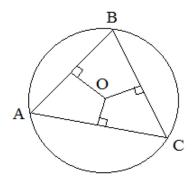
Что мы сегодня будем изучать?

Треугольник, элементы треугольника, Способы вычислений элементов треугольника.

Теорема синусов, теорема косинусов.

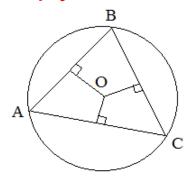
Цель урока: систематизировать и обобщить знания учащихся по теме «Треугольники». Познакомить учащихся с методами решения треугольников, закрепить знание теорем о сумме углов треугольника, синусов, косинусов.

План урока:


- 1. Теорема синусов, теорема косинусов, прототипы 16 номера ОГЭ.
- 2. Итоги.

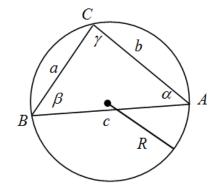
Окружность, описанная вокруг треугольника

Серединный перпендикуляр к отрезку — прямая, перпендикулярная к этому отрезку и проходящая его середину.


через

Все три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке, являющейся центром окружности, описанной вокруг треугольника.

Окружность, описанная вокруг треугольника


- Если треугольник остроугольный, центр описанной окружности лежит строго внутри треугольника.
- Если треугольник прямоугольный, центр описанной окружности лежит на середине гипотенузы.
- Если треугольник тупоугольный, центр описанной окружности лежит вне треугольника.

Теорема синусов

Отношение длины стороны треугольника к синусу противолежащего угла для данного треугольника есть величина постоянная и равная диаметру описанной около треугольника окружности:

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

Радиус описанной окружности

Радиус описанной окружности может быть найден по формулам:

$$R = \frac{abc}{4S}$$

$$R = \frac{a}{2\sin\alpha}$$

Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

$$c^{2} = a^{2} + b^{2} - 2ab \cdot \cos \gamma$$

$$A \qquad c$$

Углы В и С треугольника ABC равны соответственно 65° и 85°.

Найдите BC, если радиус окружности, описанной около треугольника ABC, равен 14.

В треугольнике ABC: $BC = \sqrt{3}$, AC = 2.

Если $\angle ABC = 60^{\circ}$, найдите $\sin \angle ABC$.

В треугольнике ABC: $\sin \angle B = 0.55$, радиус описанной около ABC окружности равен 5.

Найдите АС.

Найдите хорду, на которую опирается угол 120° , вписанный в окружность радиуса $\sqrt{3}$.

В треугольнике ABC: AC = 3, BC = 5, AB = 6.

Найдите cos ∠ACB.

Сторона правильного треугольника равна $\sqrt{3}$.

Найдите радиус окружности, описанной около этого треугольника.

