Телепроект «МОЯ ШКОЛА в online»

ГОТОВИМСЯ К ЕГЭ

ФИЗИКА

11 класс Урок № 10

Законы постоянного тока.

Кутелев Константин Александрович учитель физики и астрономии Физтех-лицея им. П. Л. Капицы

- Электрический ток упорядоченное движение заряженных частиц.
- Ток оказывает разнообразное воздействие на окружающую материю.
- Сила электрического тока мера воздействия тока. Отношение заряда, протекающего через сечение проводника, ко времени, за которое он протекает: $I = \frac{\Delta q}{\Lambda t}$.
- Сила тока величина неотрицательная (хотя иногда знак используется).
- Единица измерения [/] = ампер = A.
- Постоянный электрический ток I = const.
- Условия существования постоянного тока:
- Наличие подвижных (свободных) зарядов в среде;
- Наличие неэлектростатических сил, осуществляющих преобразование какого-либо вида энергии в энергию электрического поля.
- Напряжение скалярная физическая величина, равная отношению полной работы кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда: $U = \frac{A_{\text{полн}}}{a}$.

 ЭДС — скалярная физическая величина, равная отношению работы сторонних (неэлектростатических) сил при перемещении положительного заряда на участке к значению этого заряда:

$$\boldsymbol{\varepsilon} = \frac{A_{\text{сторонних}}}{q}.$$

- Единица измерения [U] = [ε] = вольт = В
- Электрическое сопротивление способность среды ограничивать электрический ток.
 - Взаимодействие носителей заряда с кристаллической решёткой проводника.
 - Для однородного проводника постоянного сечения:
 $R = \rho \frac{l}{s}$.
 - Единица измерения ом.
- Закон Ома для участка цепи: $I = \frac{U}{R}$.

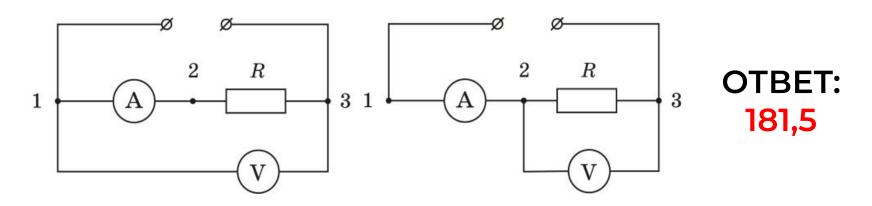
- Источник ЭДС устройство, осуществляющее преобразование энергии из/в электрическую.
 - ЭДС источника работа внутренних сил по перемещению положительного единичного заряда.
 - Внутреннее сопротивление характеризует потери энергии внутри источника.
- Закон Ома для полной цепи: $I = \frac{\varepsilon}{R+r}$.
- Последовательное соединение проводников:

$$\pmb{U} = \pmb{U_1} + \pmb{U_2} + ...$$
 , $\pmb{I_1} = \pmb{I_2} = ...$, $\pmb{R}_{\text{посл}} = \pmb{R_1} + \pmb{R_2} + ...$

• Параллельное соединение проводников:

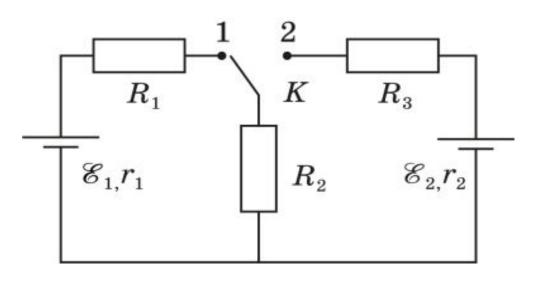
$$I = I_1 + I_2 + \dots$$
 , $U_1 = U_2 = \dots$, $\frac{1}{R_{\text{паралл}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$

- Работа электрического тока (поля) при перемещении заряда: $A = UI \Delta t$.
- Закон Джоуля-Ленца: $Q = A_{\text{поля}}$.
- Работа источника: $A_{\varepsilon} = \varepsilon I \Delta t$.


ЗАДАЧА 1

При коротком замыкании клемм источника тока сила тока в цепи /₀ = 12 A. При подключении к клеммам электрической лампы электрическим сопротивлением R = 5 Ом сила тока в цепи равна 2 А. По результатам этих экспериментов определите ЭДС источника тока.

OTBET: 12 B


ЗАДАЧА 2

Школьник собрал схему, изображённую на первом рисунке. После её подключения к идеальному источнику постоянного напряжения оказалось, что амперметр показывает ток I_1 = 0,9 A, а вольтметр - напряжение U_1 = 20 B. Когда школьник переключил один из проводников вольтметра от точки 1 к точке 2 (см. второй рисунок), вольтметр стал показывать напряжение U_2 = 19 B, а амперметр - ток I_2 = 1 A. Во сколько раз сопротивление вольтметра больше сопротивления амперметра?

ЗАДАЧА 3

Как и во сколько раз изменится мощность, выделяющаяся на резисторе R_2 в цепи, схема которой изображена на рисунке, если перевести ключ K из положения 1 в положение 2? Параметры цепи: ε_1 = 1,5 B; r_1 = 1 Oм; ε_2 = 3,0 B; r_2 = 2 Oм; R_1 = R_2 = R_3 = 4 Oм.

OTBET:

Увеличилась в 3,24 раза