Телепроект «МОЯ ШКОЛА в online»

ГОТОВИМСЯ К ЕГЭ

МАТЕМАТИКА профиль

11 класс Урок №18

Прикладные задачи физического и экономического содержания. Подстановка значений в формулу

Вишневецкая Вера Петровна учитель математики Физтех-лицей им. П.Л. Капицы

В ходе распада радиоактивного изотопа его масса уменьшается по закону $m(t) = m_0 \cdot 2^{-t/T}$, где m_0 (мг) – начальная масса изотопа, t (мин) – время, прошедшее от начального момента, T (мин) – период полураспада. В начальный момент времени масса изотопа $m_0 = 192$ мг. Период его полураспада T = 10 мин.

Через сколько минут масса изотопа будет равна 6мг?

Мяч бросили под углом α к плоской горизонтальной поверхности земли. Время полета мяча (в секундах) определяется по формуле $t=\frac{2v_0\sin a}{g}$ При каком значении угла α (в градусах) время полета составит 2,1 секунды, если мяч бросают с начальной скоростью $v_0=21\text{M/c}$? Считайте, что ускорение свободного падения $g=10\text{ M/c}^2$.

Компания Яндекс-Маркет вычисляет рейтинг интернет-магазинов по формуле

$$R = r_{\text{nok}} - \frac{r_{\text{nok}} - r_{\text{9KC}}}{(K+1)}$$

где гпок – средняя оценка магазина покупателями (от 0 до 1), гэкс – оценка магазина экспертами компании (от 0 до 0,7) и К – число покупателей, оценивших магазин. Найдите рейтинг интернет-магазина «Сигма», если число покупателей, оставивших отзыв о магазине, равно 37, их средняя оценка равна 0,64, а оценка экспертов равна 0,26.

Для поддержания навеса планируется использовать цилиндрическую колонну. Давление P (в паскалях), оказываемое навесом и колонной на опору, определяется по формуле

$$P=\frac{4mg}{\pi D^2},$$

где m=1200 кг — общая масса навеса и колонны, D — диаметр колонны (в метрах). Считая ускорение свободного падения $g=10 \,\mathrm{m/c^2}$ м/с, а $\pi=3$, определите наименьший возможный диаметр колонны, если давление, оказываемое на опору, не должно быть больше 400000 Па. Ответ выразите в метрах.

Масса радиоактивного вещества уменьшается по закону $m(t) = m_0 \cdot 2^{-\frac{t}{T}}$, где m_0 – начальная масса, а T – период полураспада. В лаборатории получили вещество, содержащее $m_0 = 12 \, \mathrm{Mr}$ изотопа меди-64, период полураспада которого $T = 12,8 \, \mathrm{часов}$. Через сколько часов количество меди -64 уменьшится до 3кг?

Плоский замкнутый контур площадью $S = 0.5 \text{ м}^2$, находится в магнитном поле, индукция которого равномерно возрастает. При этом согласно закону электромагнитной индукции Фарадея в контуре появляется ЭДС индукции, значение которой, выраженное в вольтах, определяется формулой $\varepsilon = a S \cos a$, где a — острый угол между направлением магнитного и перпендикуляром к контуру, $a = 4 \cdot 10^{-4}$ Тл/с постоянная, S — площадь замкнутого контура, находящегося в магнитном поле (M^2) . При каком минимальном угле a (в градусах) ЭДС индукции не будет превышать 10^{-4} B?

В розетку электросети подключены приборы, общее сопротивление которых составляет $R_1 = 90$ Ом. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите наименьшее возможное сопротивление R_2 этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями R_1 и R_2 их общее сопротивление дается формулой

$$R_{\text{общ}} = \frac{R_1 R_2}{R_1 + R_2}$$
,

а для нормального функционирования электросети общее сопротивление в ней должно быть не меньше 9 Ом. Ответ выразите в омах.

Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковые импульсы частотой 749 МГц. Скорость погружения батискафа v вычисляется по формуле

$$v = c \cdot \frac{f - f_0}{f + f_0},$$

где c = 1500 м/с — скорость звука в воде, f_0 — частота испускаемых импульсов, f — частота отражённого от дна сигнала, регистрируемая приёмником (в МГц). Определите частоту отражённого сигнала в МГц, если скорость погружения батискафа равна 2 м/с.

При адиабатическом процессе для идеального газа выполняется закон

$$pV^k = 10^5 \, \text{\Pia} \cdot \text{m}^5,$$

где p – давление в газе в паскалях, V – объем газа в кубических метрах, $k=\frac{5}{3}$.

Найдите, какой объём V (в куб. м) будет занимать газ при давлении p, равном $3,2\cdot 10^6$ Па.

Груз массой 0,08 кг колеблется на пружине. Его скорость v меняется по закону

$$v = v_0 \cos \frac{2\pi t}{T},$$

где t — время с момента начала колебаний, T = 2 с — период колебаний, $v_0 = 0.5$ м/с. Кинетическая энергия E (в джоулях) груза вычисляется

по формуле $E = \frac{mv^2}{2}$, где m — масса груза в килограммах, v — скорость груза в м/с. Найдите кинетическую энергию груза через 1 секунду после начала колебаний. Ответ дайте в джоулях.

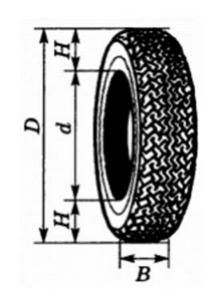
Задача ЕГЭ 10

На автомобильной шине с помощью специальной маркировки указаны ее размеры. Например, 265/60R18. Первое число означает ширину шины В в миллиметрах (см. рис.). Второе число означает отношение высоты профиля шины Н к ширине шины в процентах. Буква означает конструкцию шины (R – радиальный тип), а последнее число означает диаметр обода колеса d в дюймах. В одном дюйме 25,4 мм. В паспорте автомобиля «Лада-Калина» указана маркировка рекомендованных заводом шин: 215/55R17. Найдите диаметр колеса D этого автомобиля.

Задача ЕГЭ 10

Решение: Маркировка 215/55R17, 1 дюйм =25,4 мм,

Ширина шины B=215 мм, R- то что тип колеса радиальный d=17дюймов; 17 дюймов в миллиметрах $d=17\cdot 25, 4=431,8$ мм


Второе число маркировки $55 = \frac{H}{B} 100\%$

$$H = \frac{55 \cdot B}{100} = \frac{11825}{100} = 118,25$$

$$D=2H+d=118,25\cdot 2+431,8=$$

$$=236, 5+431, 8=668, 3$$

Ответ: 668,3

ЛИТЕРАТУРА

 Практика: ФИПИ, открытый банк заданий

• Практика: ALEXLARIN.NET