Задача Лед в шприце.

8 класс.

(Финал олимпиады им. Максвелла или олимпиада им. П.Л. Капицы).

При теплообмене количество тепла q, поступающее в единицу времени от нагретого тела к холодному телу, пропорционально разности температур этих тел (закон Ньютона-Рихмана)

$$q = \alpha(t_1 - t_2), \tag{1}$$

где t_1 и t_2 температуры горячего и холодного тела соответственно, а α — коэффициент теплопередачи, зависящий от геометрических, конструктивных и прочих особенностей системы тел, между которыми осуществляется теплообмен.

В данной работе вам предстоит определить коэффициент теплопередачи α между воздухом комнатной температуры и внутренним объемом шприца, заполненного тающим льдом.

Задание:

- 1. Соберите установку, аналогичную представленной на рис. 1. Перед началом измерений в мерном стакане должно Рис.1 находиться небольшое количество воды, что обеспечит насыщенность водяного пара над поверхностью воды, и исключит влияние испарения на начальной стадии эксперимента.
- 2. Зафиксируйте значение t_0 комнатной температуры в помещении.
- 3. Снимите зависимость массы m стакана с водой от времени τ . Это исследование следует проводить в течение 40-50 мин от начала стабильного вытекания капель воды из шприца.
- 4. Постройте график экспериментальной зависимости $m(\tau)$.
- 5. С помощью графика определите коэффициенты теплопередачи α_1 в начальной стадии эксперимента и α_2 в его заключительной стадии. Во сколько раз они отличаются? Опишите методику определения коэффициентов теплопередачи.
- 6. Объясните причину различия коэффициентов α_1 и α_2 .

Оборудование: устройство для крепления шприца на достаточной высоте (выше мерного стакана), пластиковый стакан (150 мл), весы, секундомер, шприц (5 мл) с замороженной в нем водой.

Решение:

Комнатная температура $t_0 = 22^0$ С.

При выполнении работы не следует тарировать весы. Они могут автоматически отключаться в процессе измерений. В этом случае достаточно снять стакан с весов и снова их включить. После очередного включения весов измерение абсолютной массы стакана с находящейся в нем водой может быть продолжено.

В таблице 1 представлены результаты измерения зависимости $m(\tau)$.

	1 ' '
τ, мин	т, г
0	69,99
5	69,98
6	69,98
7	70,15
8	70,20
9	70,26
10	70,38
11	70,44
12	70,55
13	70,61
14	70,67
15	70,80

τ, мин	т, г
16	70,86
17	70,98
18	71,09
19	71,15
20	71,28
21	71,34
22	71,48
23	71,54
24	71,61
25	71,68
26	71,75
27	71,81

т, мин	т, г
28	71,88
29	71,94
30	72,00
31	72,12
32	72,18
33	72,24
34	72,30
35	72,35
36	72,42

График полученной зависимости представлен на рис.2.

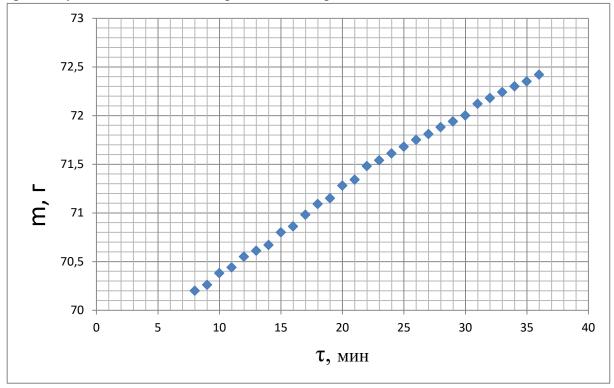


Рис.2

Видно, что график состоит из двух практически линейных участков с различными угловыми коэффициентами. Проанализируем их по отдельности. Первый участок от 8-й до 22-й минуты представлен на рис.3. Будем считать, что образовавшаяся при таянии льда вода, имеющая температуру $t_2=0^{\circ}$ С, достаточно быстро выливается из шприца и ее нагрева внутри шприца не происходит. Все тепло, поступающее из внешней среды внутрь шприца, идет на плавление льда. Уравнение теплового баланса с учетом закона Ньютона-Рихмана (1) имеет вид:

$$\Delta m\lambda = \alpha (t_0 - t_2) \Delta \tau \tag{2}$$

где Δm — масса растаявшей воды за время $\Delta \tau$, $\lambda = 330~000~\frac{Дж}{кг}$ — удельная теплота плавления льда, α — искомый коэффициент теплопередачи.

Тогда
$$\alpha = \frac{\lambda}{(t_0 - t_2)} \frac{\Delta m}{\Delta \tau}$$
 (3),

где $\frac{\Delta m}{\Delta \tau}$ — угловой коэффициент соответствующего участка графика зависимости $m(\tau)$.

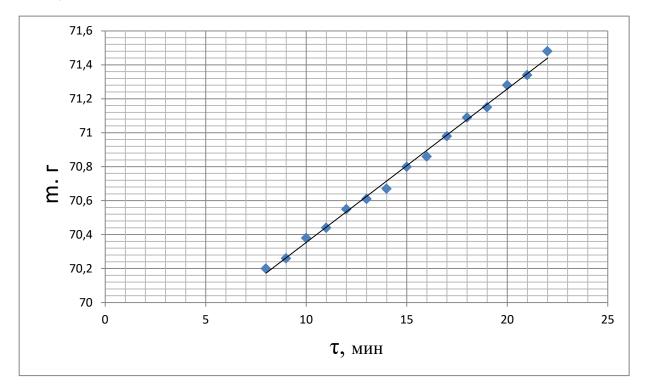


Рис.3 Подставляя числовые значения, в том числе и полученные из рис.3, находим коэффициент теплопередачи на начальной стадии эксперимента $\alpha_1=0.023\,\frac{\text{BT}}{\text{град C}}$ На рис. 4 представлен график зависимости $m(\tau)$ на заключительной стадии эксперимента.

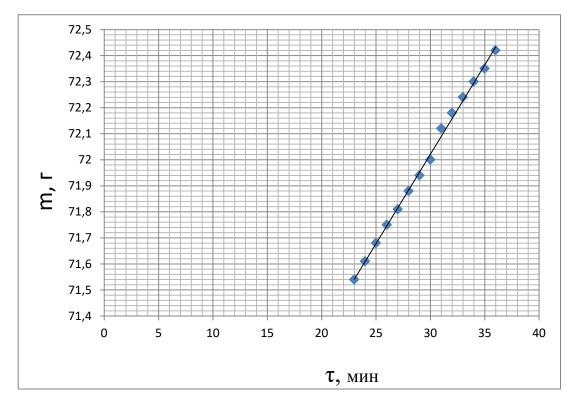


Рис.4

С его помощью находим $\alpha_2=0.017~\frac{\rm BT}{\rm град~C}$. Таким образом, отличие коэффициентов теплопередачи $\frac{\alpha_1}{\alpha_2}=\frac{0.023}{0.017}=1.35$.

Отличие коэффициентов α_1 и α_2 друг от друга может быть связано с тем, что на начальной стадии плавления ледяного столбика между ним и стенками шприца находится тонкий слой воды, который удерживается в шприце на определенной высоте благодаря капиллярному эффекту. По мере увеличения зазора между ледяным столбиком и стенками шприца эта водяная прослойка исчезает, ее место занимает слой воздуха. Коэффициент теплопроводности воздуха при комнатной температуре примерно в 23 раз меньше, чем коэффициент теплопроводности воды, поэтому передача тепла ко льду в шприце замедляется.

Критерии оценивания (20 баллов):

1. Таблица измерений		5 баллов
- оформление таблицы (единицы измерения)	2 балла	
кол-во точек >= 20 (шаг 1 мин)	3 балла	
кол-во точек <= 20 (шаг 2 мин и более)	2 балла	
- кол-во точек <= 10		
- кол-во точек <= 5	0 баллов	
2. Оформление графика		5 баллов
- подпись осей	1 балл	
- выбор масштаба	1 балл	
- оцифровка осей	1 балл	
- нанесение точек	1 балл	
- нанесение линий	1 балл	
3. Методика определения α (формула (3))		4 балла
4. Результат для α		4 балла
- отличие от авторского не более, чем на 20	% 4 балла	
- отличие от авторского не более, чем на 40	% 2 балла	
5. Объяснение возможных различия α_1 и α_2		2 балла