

Подмосковная Олимпиада

Условия и решения

11 класс

Апрель 2022

1. Классические заблуждения

4 баллов

Выберите неверные утверждения. Поясните свой выбор

- 1. Период обращения Луны вокруг своей оси составляет 27.3 дня
- 2. Венера вращается вокруг Солнца в обратную сторону, нежели другие планеты земной группы
- 3. Юпитер имеет массу большую, чем сумма масс всех остальных планет
- 4. Астероиды называются "астероидами" потому что при их открытии они больше походили на звезды, чем на тела солнечной системы
- 5. Параллакс звезд обнаружили раньше, чем аберрацию света, но позже чем определили скорость света
- 6. Голубые звезды являются более горячими, чем красные
- 7. Звезды, которые содержат больше водорода живут меньше, чем более легкие звезлы

Решение.

- 1. Период обращения Луны вокруг своей оси составляет 27.3 дня. Луна обращается вокруг Земли с периодом 27.3 дня. При этом Луна обладает синхронным вращением. Поэтому период обращения Луны вокруг своей оси также 27.3 дня. Утверждение верное.
- 2. Венера вращается вокруг Солнца в обратную сторону, нежели другие планеты земной группы. Венера вокруг свои оси действительно обращается в обратную сторону, нежели другие планеты земной группы. Но вопрос про вращение вокруг Солнца. А вокруг Солнца все планеты солнечной системы вращаются в одну и ту же сторону. Утверждение неверное.
- 3. Юпитер имеет массу большую, чем сумма масс всех остальных планет. Утверждение верное.
- 4. Астероиды называются «астероидами» потому что при их открытии они больше походили на звезды, чем на тела солнечной системы. Открытие первых астероидов было на рубеже 18 и 19 веков, в эпоху Гершеля, который открыл

Уран. Гершель приложил много усилий, чтобы эти двигающиеся по небу объекты не назывались планетами, и он оставался единственным человеком, открывшим планету. Одним из его аргументов был как раз вид объектов, так как в тот момент для всех телескопов вид астероидов был точкой. Утверждение верное.

- 5. Параллакс звезд обнаружили раньше, чем аберрацию света, но позже чем определили скорость света. Первым определили скорость света, потом аберрацию (ее масштаб 20.5'), а только потом определили параллаксы ближайших звезд. Утверждение неверное.
- 6. Голубые звезды являются более горячими, чем красные. Действительно, голубые звезды более горячие, чем красные. Температура красных звезд 3 000 4 000 К. А голубых звезд более чем 20 000 К. Утверждение верное.
- 7. Звезды, которые содержат больше водорода живут меньше, чем более легкие звезды. Более массивные звезды живут меньше, чем их менее коллеги, потому что их светимость зависит от массы $L\sim M^4$. А следовательно, время жизни звезды $t_L\sim M^{-3}$. Утверждение верное.

Итого, неверные утверждения 2 и 5.

Авторы задачи - Игнатьев В.Б., Кузнецов М.В

Критерии оценивания	4
Правильно указанные неверные утверждения 2 и 5	. 2
Пояснение к каждому из пунктов 2 и 5	. 2
Указание других ответов С).5

Сумма баллов за задачу не может быть отрицательной.

2. Сторона зимнего треугольника

8 баллов

Расстояние от Солнца до Сириуса (-1.3^m , α Большого Пса) 8.6 световых лет. Расстояние от Солнца до Проциона ($+0.4^m$, α Малого Пса) 11.4 световых лет. Определите расстояние между двумя этими звездами в парсеках, если на небе Земли угловое расстояние между звездами 26°. Определите звездные величины Сириуса из окрестностей Проциона и Проциона из окрестностей Сириуса.

Решение.

Пренебрежем расстоянием между Землей и Солнцем, так как 1 а.е. сильно меньше 8.6 световых лет. Будем считать, что наблюдатель находится на Солнце.

Найдем расстояние между Сириусом и Проционом по теореме косинусов.

$$r = \sqrt{8.6^2 + 11.4^2 - 2 \cdot 11.4 \cdot 8.6 \cdot \cos 26} = 5.26$$
 св. лет = 1.6 пк

Здесь лучше оставить расстояние в световых годах. Так как для дальнейшего решения через формулу Погсона нужно отношение расстояний, а они даны в световых годах.

Посчитаем звездную величину одной из звезд по формуле Погсона:

$$\frac{E_1}{E_2} = 10^{-0.4(m_1 - m_2)}, \qquad m_1 - m_2 = -2.5 \log \frac{E_1}{E_2} = -2.5 \log \frac{r_2^2}{r_1^2} = 5 \log \frac{r_1}{r_2}$$

Здесь использовалось, что освещенность обратно пропорциональна квадрату расстояния:

$$\frac{E_1}{E_2} = \frac{r_2^2}{r_1^2}$$

Тогда итоговая формула:

$$m_1 = m_2 + 5\log\frac{r_1}{r_2}$$

Подставляем значения и находим звездную величину Сириуса из окрестностей Проциона.

$$m_c = -1.3 + 5\log\frac{5.26}{8.6} = -2.38^m$$

Аналогично найдем звездную величину Проциона из окрестностей Сириуса:

$$m_p = 0.4 + 5 \log \frac{5.26}{11.4} = -1.28^m$$

Возможен и **альтернативный** ход решения задачи, в ходе которого учащийся находится абсолютные звездные величины обеих звезд, а потом пересчитывает видимые звездные величины звезд для нового расстояния.

Найдем расстояние между Сириусом и Проционом по теореме косинусов.

$$r = \sqrt{8.6^2 + 11.4^2 - 2 \cdot 11.4 \cdot 8.6 \cdot \cos 26} = 5.26$$
 св. лет = 1.6 пк

Найдем абсолютную звездную величину одной из звезд:

$$M - m = 5 - 5 \log r$$
, $M = m + 5 - 5 \log r$

Определим абсолютную звездную величину Сириуса, подставив в формулу данные:

$$M_c = -1.3 + 5 - 5\log\frac{8.6}{3.26} = 1.6^m$$

Аналогично найдем абсолютную звездную величину Проциона:

$$M_p = 0.4 + 5 - 5 \log \frac{11.4}{3.26} = 2.68^m$$

Теперь найдем видимые звездные величины звезд, как их видно из окрестностей соседней звезды:

$$m = M - 5 + 5\log r$$

Тогда посчитаем звездную величину Сириуса из окрестностей Проциона:

$$m_c = 1.6 - 5 + 5 \log 1.6 = -2.38^m$$

Аналогично найдем звездную величину Проциона из окрестностей Сириуса:

$$m_p = 2.68 - 5 + 5\log 1.6 = -1.3^m$$

Автор задачи - Кузнецов М.В.

Критерии оценивания	8
Определение расстояния между звездами	. 3
Вывод общей формулы для звездной величины	.3
Определение звездных величин с точностью до 0.1^m	2
Для Сириуса1	
Для Проциона	

Для второго варианта решения разбалловка будет выглядеть следующим образом.

Критерии оценивания	8
Определение расстояния между звездами	3
Определение абсолютных звездных величин 2х звезд	3
Определение звездных величин с точностью до 0.1^m	2
Для Сириуса1	
Для Проциона	

3. Катастрофа 8 баллов

После неожиданной катастрофы ось вращения Земли поменяла свое направление и теперь полярные круги совпадают с тропиками. Оцените длительность полярной ночи на широте Москвы (φ = 56° с.ш.).

Решение.

Решение задачи разбивается на несколько простых этапов.

1 этап. В условии задачи описаны последствия некой катастрофы. Давайте поймем, что это значит для решения задачи. Если тропики $\varphi=\varepsilon$ и полярные круги $\varphi=90^\circ-\varepsilon$ совпадают, то

$$\varepsilon = 90^{\circ} - \varepsilon$$

Следовательно, $\varepsilon = 45^{\circ}$.

Поскольку широта Москвы $\varphi = 56^\circ$ с.ш. больше, чем 45° , то в точке наблюдения полярные ночи будут, и решение будет не пустым множеством.

2 этап. Определим, при каких склонениях Солнце будет являться невосходящим. Для этого высота его верхней кульминации должна быть меньше нуля.

$$h_{\uparrow} = (90^{\circ} - \varphi) + \delta < 0$$

Определим граничное значение склонения Солнца, при котором его верхняя кульминация происходит строго на горизонте.

$$\delta = -(90^{\circ} - \varphi) = -34^{\circ}$$

Здесь сразу хочется перейти к третьему этапу и посчитать, какую часть года склонение Солнца $\delta_{\odot} \leq -34^{\circ}$. Но давайте вспомним, что такое «полярная ночь». Полярная ночь — это период, когда Солнце более 24 часов не появляется из-за горизонта. Для решения задачи нам нужно учесть, что Солнце обладает не нулевым угловым размером и что существует такое явление, как рефракция. Следовательно, чтобы никакая часть Солнца не появлялась из-за горизонта, необходимо, чтобы

$$h_{\uparrow} \le -(\rho_{\odot} + p) = -51',$$

где ρ_{\odot} = 16′ — это угловой размер Солнца, а p = 35′ — величина рефракции у горизонта. Следовательно,

$$\delta_{pr} = -34^{\circ}51'$$

3 этап. Определим, какую часть года склонение Солнца имеет величину меньше предельной, если в течении года величина склонения Солнца $\delta \in [-45^\circ; 45^\circ]$.

Рассмотрим сферический треугольник вблизи любого из равноденствий.

Нам известна сторона δ , угол ε и нужно найти сторону λ . Сферическая теорема синусов для этого треугольника:

$$\frac{\sin \delta}{\sin \varepsilon} = \frac{\sin \lambda}{\sin 90^{\circ}}$$

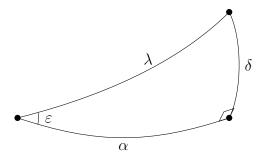


Рис. 1 Сферический треугольник

Отсюда:

$$\lambda = \arcsin(\frac{\sin \delta}{\sin \varepsilon}) = 53^{\circ}55'$$

Поскольку граничное условие было $\delta_\odot \leq -34^\circ 51'$, то оно наступает при $\lambda_1 = 180 + 53^\circ 55' = 233^\circ 55'$, а заканчивается при $\lambda_3 = 360 - 53^\circ 55' = 306^\circ 05'$.

Или
$$\Delta \lambda = 2 \cdot (90 - 53^{\circ}55') = 72^{\circ}10'$$
.

Соответственно, длительность полярной ночи можно получить как долю года

$$\Delta t = T_{\oplus} \frac{\Delta \lambda}{360^{\circ}} = 365.25 \frac{72^{\circ}10'}{360^{\circ}} = 73.2$$
 дня

Автор задачи - Игнатьев В.Б.

Критерии оценивания	8
Определение ε	. 3
Определение предельного склонения Солнца	3
Правильное применение формулы верхней кульминации1	
учет углового радиуса Солнца	
учет рефракции1	
Получение итогового ответа	2
учет фактора 21	

4. Экватор Солнца

8 баллов

На экваторе Солнца появилась группа пятен. Сравните, сколько времени можно будет их наблюдать с Земли и с Меркурия. Считать, что за время наблюдения пятна существенно не изменяют размеров.

Решение. Определим, какая точка на небесном теле позволяет увидеть Солнце дольше всего? Очевидным ответом являются полюса. Откуда Солнце видно дольше всего. Следовательно видимость определяется тем, как пятно вращается вместе с Солнцем. Следовательно, видимое движение пятен по диску Солнца будет суммироваться из двух движений и расчитываться как синодический период с вращениями направленными в

одну сторону. Считая движение планет вокруг Солнца круговым найдем отношение этих синодических периодов для Мерикурия и Земли:

$$S_{\mbox{$\begin{subarray}{c} \end{subarray}}} = \frac{T_{\mbox{$\begin{subarray}{c} \end{subarray}} T_{\odot}}}{T_{\mbox{$\begin{subarray}{c} \end{subarray}}}, \qquad S_{\oplus} = \frac{T_{\oplus} T_{\odot}}{T_{\oplus} - T_{\odot}}$$

Подставляя:

$$\frac{S_M}{S} = \frac{\frac{T_{\mbox{$\lozenge}}^{T_{\mbox{$\lozenge}}}T_{\odot}}{T_{\mbox{\lozenge}} - T_{\odot}}}{\frac{T_{\mbox{\lozenge}}^{T_{\odot}}}{T_{\mbox{\lozenge}} - T_{\odot}}} = \frac{T_{\mbox{\lozenge}}(T_{\mbox{\lozenge}} - T_{\odot})}{T_{\mbox{\lozenge}}(T_{\mbox{\lozenge}} - T_{\odot})} = \frac{88.0 \cdot (365.24 - 25.4)}{365.24 \cdot (88.0 - 25.4)} = 1.3$$

Ответ: 1.3 раза

Автор задачи - Пополитова И.В.

Критерии оценивания	8
Обоснование суммы вращений	2
Расчет или выражения для Меркурия	
Расчет или выражения для Земли	2
Итоговой подсчет или обратная величина	2

5. Прохождение астероида

8 баллов

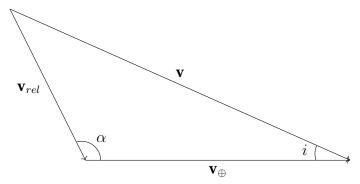
Каждый год 24 мая земные астрономы наблюдают прохождение короткопериодичного астероида по диску Солнца. Им удалось измерить, что двигается он под углом в 80° к солнечному экватору. При этом наклон орбиты астероида 30°, а аргумент перицентра — 90°. Определите возможные значения неизвестных вам кеплеровых элементы орбиты астероида. Наклоном плоскости экватора Солнца к эклиптике, эксцентриситетом земной орбиты и взаимодействием астероида с Землей пренебречь. Астероид пересекает солнечный экватор по направлению из северного полушария в южное, двигаясь с западного края к восточному.

Решение. Нам нужно определить долготу восходящего узла астероида, а также его большую полуось и эксцентриситет. Начнем с первого. Из условия задачи видно, что астероид находится в одном из узлов своей орбиты каждый год 24 мая. Значит, линия узлов астероида направлена под углом λ к линии равноденствий, где λ — геоцентрическая эклиптическая долгота Солнца 24 мая.

$$\lambda = \frac{360^{\circ}}{365.24} N$$

Где N — количество дней от 24 мая до весеннего равноденствия. Тогда, при $N \approx 65$:

$$\lambda = 64^{\circ}$$


Если восходящий узел орбиты находится за Солнцем 24 мая, немедленно получаем:

$$\Omega_1 = 180^\circ + \lambda = 244^\circ$$

Во втором случае за Солнцем уже нисходящий узел. Тогда:

$$\Omega_2 = \lambda = 64^{\circ}$$

Для нахождения остальных элементов нарисуем треугольник скоростей, состоящий из скорости астероида v_{tel} :

Этот треугольник — геометрическая интерпретация векторного равенства:

$$\mathbf{v}_{rel} = \mathbf{v} - \mathbf{v}_{\oplus}$$

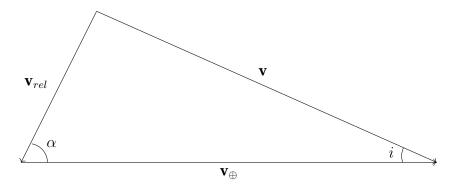
Данное равенство есть простое определение относительной скорости. Из т. синусов для треугольника скоростей имеем:

$$v = v_{\oplus} \frac{\sin \alpha}{\sin \alpha + i}$$

Из условия, $\alpha = 180^{\circ} - 80^{\circ} = 100^{\circ}$, $i = 30^{\circ}$, v_{\oplus} возьмем как 29.8 км/с. Тогда:

$$v = 38.3 \text{ km/c}$$

Найденное v есть тангенциальная скорость астероида в точке узла орбиты. Заметим, что точка узла орбиты является фокальным параметром орбиты астероида, поскольку $\omega = 90^{\circ}$. Поскольку для тангенциальной скорости v_{τ} выполнено:


$$\mathbf{v}_{\tau} = \frac{\sqrt{GMp}}{r}$$

Немедленно получаем:

$$V = \sqrt{\frac{GM}{p}}$$

$$p = 0.61$$
 a.e.

Все было бы прекрасно, однако мы рассмотрели не все возможные случаи. На этой картинке астероид пересекает солнечный экватор в направлении с востока на запад (если он находится вблизи нисходящего узла). Но никто не мешает ему двигаться с запада на восток! В этом случае треугольник скоростей будет выглядеть как:

В этом случае $\alpha = 80^{\circ}$, $i = 30^{\circ}$. Из той же теоремы синусов получим:

$$v = 31.2 \text{ km/c}$$

$$p = 0.91$$
 a.e.

Теперь обратимся к еще одной важной части условия: прохождения астероида по диску Солнца происходят каждый год в одну и ту же дату. Это возможно только если период Земли равен целому числу периодов астероида. Если T — период астероида в годах, то:

$$T = \frac{1}{n}$$

Где n=1,2,3... — произвольное натуральное число. В силу третьего закона Кеплера:

$$a = n^{-\frac{2}{3}}$$
 a.e.

С другой стороны:

$$p = a(1 - e^{2}) = n^{-\frac{2}{3}}(1 - e^{2})$$
$$e = \sqrt{1 - pn^{\frac{2}{3}}}$$

Где p, конечно, взят в астрономических единицах. Нетрудно видеть, что при p=0.61 выражение для e вещественно только при n=1,2. При p=0.91 и вовсе лишь при n=1. Другие случаи не реализуются в задаче. Для наглядности оба случая представлены в таблице.

p, a.e.	n	T, лет	a, a.e.	e
0.61	1	1	1	0.62
0.61	2	0.5	0.63	0.18
0.91	1	1	1	0.30

Автор задачи - Муратов В.А.

Критерии оценивания	8
Определение долготы восходящего узла	1
Если рассмотрен только один случай	
Нахождение гелиоцентрической скорости астероида	2
Если рассмотрен только один случай	
Выражение для фокального параметра, его верный подсчет	1
За каждый рассмотренный случай	
Указание о кратности периодов	1
Нахождение возможных эксцентреситетов	2
За каждый рассмотренный случай	
Определение полуосей орбит	. 1

Комментарий: Арифметическая ошибка в любой части решения карается 1 баллом при условии верного выполнения остальных пунктов

Комментарий 2: Некоторые ответы для эксцентриситета могут довольно сильно отличаться от указанных в решении в случае, если участник принимает скорость Земли равной 30 км/с. Это не должно влиять на итоговую оценку за задачу.

6. Вояджеры 10 баллов

Перед вами графики скорости и расстояния от времени для самых известных космических аппаратов Вояджер 1 и 2.

- 1. Определите дату пролета с точностью до 1 месяца больших планет Солнечной системы и скорость после пролета для каждого аппарата.
- 2. Даты и скорость пролета гелиопаузы.
- 3. Определите разницу расстояний от Солнца Вояджера 1 и Вояджера 2 в 2050 году.

Решение.

Раз на одном графике размещены и скорость, и расстояние от времени, то необходимо понять, как двигались аппараты. Внимательно присмотревшись к графику, видим, как падает скорость и выходит на постоянную величину. Следовательно, аппараты двигались со скоростью, превышавшей вторую космическую для Солнца на расстоянии орбиты Земли.

Миссия Вояджеров состояла в пролете мимо всех планет гигантов за короткое время, то аппараты должны были покинуть солнечную систему. Пролет должен был быть однократным и являлся по сути гравитационным маневром. Аппарат, попадая в зону действия планеты, сначала разгонятся, а затем теряет скорость. Таким образом, пролет мимо планеты - это пик скорости.

Посмотрев на количество «пиков», становится понятно, что Вояджер-1 посетил всего две планеты: Юпитер и Сатурн, а Вояджер-2: Юпитер, Сатурн, Уран и Нептун. Причем первый пик на графике мы не считаем, т.к. это скорость связана со стартом с Земли. По этим пикам и определим даты пролетов.

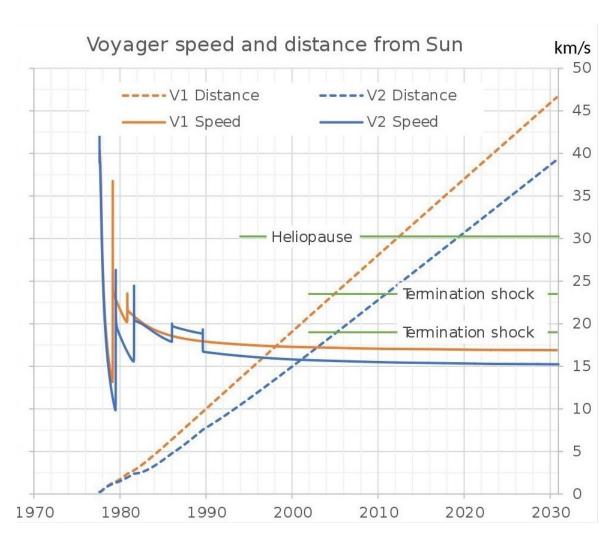


Рис. 2 Скорость и расстояние АМС Вояджер 1 и 2 от времени

Порядок планет мы уже определили - аппарат посещает их последовательно. Да и крайне не разумно отправлять аппарат за пределы Солнечной системы, иногда возвращая его внутрь СС.

Ответим последовательно на все вопросы задачи. Для этого воспользуемся линейкой определим масштаб оси по времени - между большими делениями 24.5 мм = 10 лет. Что составляет 0.41 года на мм.

- Пик номер 1(Юпитер) на кривой Вояджера-1 отстоит на 2 мм от 1980 г в прошлое, что дает дату: 1979.18 что соответствует марту 1979 г Скорость на 4 мм больше чем 35 км/с. Что составит 36.6 км/с.
- Пик номер 2 (Сатурн) на кривой Вояджера-1 отстоит на 3 мм от 1980 г в будущее, что дает дату: 1981.23 что соответствует март 1981 г. Скорость на 9 мм больше чем 20 км/с. Что составит 23.6 км/с.
- Пик номер 1 (Юпитер) на кривой Вояджера-2 отстоит на 1 мм от 1980 г в про-

шлое, что дает дату: 1979.59 что соответствует августу 1979 г. Скорость на 3 мм больше чем 25 км/с. Что составит 26.2 км/с.

- Пик номер 2 (Сатурн) на кривой Вояджера-2 отстоит на 4 мм от 1980 г в будущее, что дает дату: 1981.64 что соответствует марту 1981 г. Скорость на 11 мм больше чем 20 км/с. Что составит 24.4 км/с.
- Пик номер 3 (Уран) на кривой Вояджера-2 отстоит на 9.5 мм от 1990 г в прошлое, что дает дату: 1986.11 что соответствует февралю 1986 г. Скорость точно составляет 20 км/с.
- Пик номер 4 (Нептун) на кривой Вояджера-2 отстоит на 1 мм от 1990 г в прошлое, что дает дату: 1989.59 что соответствует августу 1989 г. Скорость на 11 мм больше чем 15 км/с. Что составит 19.4 км/с.

Снимем точки пересечения Гелиопаузы:

- Пересечение траектории гелиопаузой на кривой Вояджера-1 отстоит на 6 мм от 2010 г в будущее, что дает дату: 2012.46 что соответствует июню 2012 г. Скорость на 1 мм больше чем 15 км/с. Что составит 17.0 км/с
- Пересечение траектории гелиопаузой на кривой Вояджера-2 отстоит на 1.5 мм от 2020 г в прошлое, что дает дату: 2019.39 что соответствует маю 2019 г. Скорость на 5 мм больше чем 15 км/с. Что составит 15.4 км/с.

Для определения скорости необходимо определить масштаб по скоростям главные деления составляют соотношение: 12.5 мм = 5 км/c. 1 мм составляет 0.4 км/c на мм. Скорость на гелиопаузе одна и та же, поскольку расстояние расположение гелиопаузы одинаковое, на 0.5 мм больше чем 30 км/c. Значит скорость равна: 30.2 км/c.

Определим расстояние до аппаратов, для этого необходимо воспользоваться справочными данными: Расстояние до Юпитера составляет 5.2 а.е. и до проекции последнего пика скорости на кривую расстояния 30.1 а.е.— Нептуна. Легко убедится, что масштаб составляет 10 а.е. в одной клетке - 6 мм. Или 1.67 а.е. на мм.

Следовательно, к примеру, в 2000 г. расстояние между аппаратами составляло по графику 10 мм, в 2030 г составит 18.5 мм. За 30 лет оно выросло на 8.5 мм, или примерно 2.83 мм за 10 лет. В 2050 г оно составит $18.5 + 2.83 \cdot 2 = 24.16$ мм, что составит 40.3 а.е.

Ответы: А) Пролет и скорости. Вояджер 1: Юпитер - март 1979 г, 36.6 км/с, Сатурн - март 1981 г, 23.6 км/с. Вояджер-2: Юпитер - август 1979 г, 26.2 км/с, Сатурн - август 1981 г, 24.4 км/с, Уран - февраль 1986 г, 20 км/с, Нептун - август 1989 г, 19.4 км/с. Б) Даты и скорости пересечения гелиопаузы: июнь 2012 г, 17.0 км/с и май 2019 г, 15.4 км/с. В) В 2050 году расстояние между Вояджером-1 и Вояджером-2 составит 40.3 а.е.

Автор задачи - Кузнецов М.В.

Критерии оценивания	10
Пункт А. по 1 баллу за каждую дату и скорость	6
Пункт В. Определение расстояний и скорости по 1 баллу	3
Пункт С. Определение расстояния между аппраратами в 2050 г	1